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ABSTRACT

Photovoltaic and rainwater harvesting assessment on rooftop has been 
studied extensively. Detailed methodologies are available over large 
study areas and designed to use data that are usually difficult and 
expensive to acquire. However, much less attention has been paid to the 
use of low-cost data for the estimation of photovoltaic parameters and 
rainwater collection in individual buildings. In this study, a workflow for 
extraction of geometrical information used in Photovoltaic and rainwater 
harvesting potential estimation from UAV optical images used to estimate 
photovoltaic and rainwater harvesting potential is presented. The optical 
images captured by the DJI Phantom 4 Unmanned Aerial Vehicle (UAV) 
were used to compute a point cloud, using state of the art Structure from 
Motion (SfM) algorithms. The modeling of the roof planes was made 
based on the spatial relationships between points using a Delaunay 
triangulation. From the generated model, roof geometrical parameters 
such as area, slope, and orientation were extracted and compared with 
reference measurements of Light Detection And Ranging (LiDAR) of 
the same scene. Statistical results from the experiments show that the 
SfM and LiDAR extracted parameters are very similar. The geometric 
parameters derived from UAV optical images can be used to support 
the analysis of the photovoltaic and rainwater harvesting potential in 
individual buildings. This method has the advantage to achieve results 
through the combination of low-cost technologies for data acquisition 
and processing, resulting in an easily reproducible methodology.
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RESUMO

Neste artigo é apresentada uma metodologia para extração de 
informação geométrica usada para estimativa do potencial fotovoltaico 
e coleta da água de chuva. A abordagem proposta usa câmeras a bordo 
de plataformas UAV para aerofilmagens e o processamento visando 
a geração de nuvem de pontos é feito usando algoritmos SfM. A 
modelagem dos planos do telhado é feita com base na relação espacial 
entre pontos vizinhos usando a triangulação de Delaunay. Do modelo 
gerado é extraída a informação geométrica do telhado (área, inclinação 
e orientação) e essa é comparada com as medidas de referência de 
uma nuvem de pontos LiDAR da mesma cena. Resultados estatísticos 
dos experimentos mostraram uma similaridade entre os parâmetros 
extraídos nas nuvens SfM e LiDAR. Os parâmetros geométricos 
derivados de imagens ópticas podem ser usados para tomada de 
decisão na análise de potencial fotovoltaico e coleta de água pluvial em 
telhados de edificações singulares. A principal vantagem do método é 
que o resultado é alcançado por meio da combinação de tecnologias 
de baixo custo para aquisição e processamento de dados, tornando a 
metodologia facilmente reprodutível.

Keywords: Informação geométrica, Fotovoltaico, Água pluvial.

	 1. INTRODUCTION

	 The growing energy demand has reinforced the research and 
use of alternative energy sources to reduce climate changes and avoid 
environmental problems. Solar energy is a valid alternative, which can 
be collected and converted into electric energy or heath for residential 
energy supply. This can be done by installing solar panels on the roof of 
buildings. Nevertheless, not all roofs are economically viable for solar 
energy, because of its size, orientation or slope. Information about the 
geometry of the roof is necessary to verify if it is suitable for solar energy 
collection. The size of a roof is also useful to compute the volume of 
rainwater intercepted by the roof, another alternative and environmental 
correct solution for water supply. Therefore, 3D information on the roof is 
needed for the evaluation of the potential photovoltaic production and/or 
rainwater harvesting. Economical and logistical constraints restrict the 
measurement of the extension and shape of the roof. Available methods 
include the use of aerial imagery, airborne LiDAR, and conventional 
topography. Nevertheless, buying an aerial survey or airborne LiDAR 
data of a building is too expensive. A topographic survey would be a 
viable option, but it may also be restricted by the available space around 
a high building. It also does not allow obtaining data of the rooftop. 
Recently, a new option became available and interesting, because of 
its lower cost and capacity to collect data of the rooftop. The use of UAV
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enables collecting data that can be   used   to   compute a point   cloud 
of the roof applying   photogrammetry and image processing. Analyzing 
the point cloud, it becomes possible to model the geometry of the roof.
	 To date, a number of representative surveys concerning roof 
modeling methods have been published in the literature, as summa-
rized in various surveying articles (Brenner, 2005; Wang et al., 2018).  
Roof modeling methods can be divided on two main groups: a model-
-based and data-driven. Most of them are applied to LiDAR data but 
can be adapted to point clouds derived from images. The model-based 
methods aim at fitting a pre-defined template to the data, based on a 
collection of possible shapes stored in a library (Maas and Vosselman, 
1999; Tarsha-Kurdi et al., 2007). In the data-driven method, segmen-
tation algorithms are used to extract roof parts or edges in a previous 
step to shape modelling. There is no need for a specific library (Tarsha-
-Kurdi et al., 2007; Oude Elberink, 2008). One advantage of data-driven 
approaches is the capacity to adapt to different roof shapes. Examples 
can be found in the literature. For example, Joachim et al., (2009) de-
tect roof planes in LiDAR data and then compute aspect, slope, and 
area of each roof facet. Then, it is carried out the photovoltaic potential 
analysis for each roof plane. Recent trends use a deep neural network 
method for roof segmentation (Pohle-Fröhlich, et al., 2019).
	 Some authors also rely on the combination of LiDAR data 
and other information sources.  For example, Hujebri et al., (2013) or 
Awrangjeb et al., (2013) proposed the integration of LiDAR data and 
aerial imagery for roof modeling.  Image segmentation algorithms were 
applied to extract the roof borders and break lines and then LiDAR data 
are used to extract the roof planes.
	 The use of aerial imagery instead of LiDAR data is a matter of 
research in recent literature. López-Fernández et al., (2015) describe 
an example, where RGB aerial images enable generating a 3D point 
cloud through photogrammetric and image processing algorithms. In a 
second step, segmentation is applied to the 3D point cloud for detec-
tion, extraction, and classification of roof planes. The roof planes are 
classified according to their theoretical productivity derived from their 
geometric characteristics (area, slope, and orientation). They also in-
clude thermographic information to locate obstacles for the installation 
of solar panels.
	 We propose an approach for the extraction of geometrical pa-
rameters used in photovoltaic and rainwater harvesting potential esti-
mation that is cost-effective. To achieve this, we combine low-cost te-
chnologies for data acquisition with free software for data processing. 
The method is based on the use of unmanned aerial vehicles and the 
structure from motion approach and has great potential because of its 
lower cost when an individual building is analyzed within a project to
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install solar panels and rainwater harvesting systems. An approach 
conceptually similar to ours has earlier been reported by lopes López-
-Fernández et al., (2015), but have not focused on low-cost sensors/
software and/or individual buildings. In the next section, the proposed 
method is introduced. Then, experiments with real data are presented 
to verify the proposed approach. Finally, conclusions and recommenda-
tions are outlined for further research.

	 2 METHODOLOGY 

	 The methodology is summarized in four main steps presented 
in Figure 1: (1) Data collection (2) Pre-processing; (3) Point cloud pro-
cessing, and (4) 3D modeling of roof elements and computation of geo-
metric parameters used in the estimation of photovoltaic and rainwater 
harvesting potential.

Figure 1 - Methodological flowchart

	 2.1 Data Collection and Pre-Processing

	 The aerial survey over the study area (Figure 2a) was carried 
out using the built-in camera of the small-sized four-axis DJI Phantom 4 
quadrotor (Figure 2b). The DJI Phantom 4 is equipped with an onboard 
autopilot system, a compass, GPS and IMU sensors and a transmitter, 
a set that provides the position and altitude of the platform. 
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(a)

(b)

Figure 2 - (a) Location of the Study Area and (b) DJI Phantom 4 
Quadcopter

	 The flight parameters were defined from the Equation 1:

(1)µ∗=
f
HGSD
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where GSD is Ground Sample Distance, H is the flight height (m), f the 
focal length (mm), and µ  is the pixel size (mm). Flight planning was car-
ried out using the Pix4D capture (available for IOS and Android syste-
ms), to define the route of the UAV for the data collection. The average 
flight height ranged between 20–40 meters (resulting in a mean GSD of 
0.82 centimeters) and planned overlap of 80% lateral and 70% longitu-
dinal. The images were visually inspected to discard poor images (i.e., 
blurred images).

	 2.2. Point cloud processing

	 It was computed a point cloud applying the structure from mo-
tion (SfM) approach, available in the VisualSFM (Wu, 2011) software, 
using the collected images. The pipeline includes:

(i) Features extraction and matching: In this step, homologous points 
are identified in neighboring images using the Scale Invariant Fea-
ture Transform (SIFT) algorithm (Lowe, 2004). The idea is to detect 
significant regions in the image and describe them with parameters 
that are invariant to scale rotation and illumination. The significant 
points, described by their parameters, are then compared to points 
detected in another image and similarity compatibility evaluated. If 
a point is detected in two images, the pair is matched. The Random 
SAmpling Consensus (RANSAC) algorithm (Fischler and Bolles, 
1981) is applied to select the best matches and discard false pairs.
(ii) Bundle adjustment: The bundle adjustment is solved iteratively 
to reconstruct and refine the model starting with the pair of images 
with the largest number of good matches, and sequentially adding 
new images. The bundle adjustment adjusts a “bundle” of light rays 
that are leaving each 3D point towards each camera center and 
vice-versa (Ullman, 1979). It starts with an approximate solution for 
the camera pose and position and refines this solution by minimizing 
a cost function based on the difference between the projection of 
the feature points and the tracked features descriptors on the ima-
ges (Triggs et al., 2000). The minimization is performed numerically 
using a non-linear least squares method, such as the Levenberg-
-Marquardt algorithm (Hartley and Zisserman, 2003). As a result, 
“correct” camera orientation (interior and exterior) and sparse 3D 
point cloud are obtained.

(iii) Dense reconstruction: In this step, it is increased the density of 
the point cloud based on the results of the bundle adjustment and 
the Patch-based Multi-view Stereo Software (PMVS), developed by 
Furukawa et al., (2010) and based on an algorithm for multiview 
stereopsis, that outputs a dense set of small patches covering the
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visible surfaces in the images. This allows the PMVS algorithm (Fu-
rukawa and Ponce, 2010) to run dense reconstruction cluster-by-
-cluster and merge the results into a dense 3D point cloud. It must 
be taken into account that the point cloud generated by the Struc-
ture from Motion approach can fail on edge detection or present 
variations in density. This due to the repetitive effect of patterns and 
symmetries in the architecture of the scene (Wilson; Snavely, 2013; 
Cohen et al., 2012; Kosecka; Zhang 2010). Nevertheless, it allows 
computing a point cloud with a relatively low cost.

	 2.2.1 Quality assessment

	 The result was evaluated compared to a reference dataset, a 
cloud derived from an aerial   LiDAR   survey with   an accuracy of 0.60 
m.  The computed point cloud was transformed into the same reference 
system as the reference point cloud (WGS-84), applying a 3D affine 
transform Equation 2. For this purpose, homologous points were se-
lected in the reference and the computed point clouds. The parameters 
of the transform were estimated applying the Least Squares Method 
(LSM):

(2)

where a11, a12, a13, ..., a34 are the parameters to be determined; 
X0, Y0, Z0 the coordinates in the original system and X, Y and Z the 
coordinates in the reference system. A direct point-to-point comparison 
is not possible, because the sets of points are different. Therefore, a 
triangulation was computed from the LiDAR point cloud and used as 
a reference surface. For each point in the SfM derived point cloud, the 
X, Y coordinates were used to find the triangle that encloses the point. 
Then, the height of this location in the triangulation was interpolated. 
The difference between the Z coordinate of the point and the interpola-
ted Z coordinate of the triangulation was computed. Finally, the average 
and the root mean square error (RMSE) of the differences between the 
two models were obtained.
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2.3 Roof modeling
The approach used to identify the roof planes is based on the analysis 
of local slope within the Delaunay triangulation computed from the point 
cloud. The triangulation is composed by vertices and edges, being the 
vertices the set of original points. The edges build up a triangle that 
links three neighboring points. Larger regions, composed of different 
contiguous triangles, are identified detecting neighboring triangles with 
similar gradient. The normal vector of each triangle is computed accor-
ding to Equation 3:

(3)

a, b and c are the components of the normal vector to the plane, and d 
is the independent term.
	 We call aspect the relative orientation of the surface in relation 
to the north direction, which can be computed from the two first compo-
nents of the normal vector, as shown in Equation 4 (López-Fernández, 
et al., 2015).

(4)

	 Although the aspect can assume any value between 0-360 de-
grees, it is expected that some angles are more frequent when a roof is 
composed by plane surfaces. Therefore, it is computed the relative fre-
quency of the aspects to detect the most frequent angles. Each triangle 
is represented in a bi-dimensional space, representing the horizontal 
components of the normal vector (a, b). A clustering algorithm detects 
the most frequent directions according to a frequency threshold. In the 
end, each triangle is labelled according to the group in which it is inclu-
ded.
	 In the next step, adjacent triangles with the same label are 
grouped to build up a plane of the roof, applying the region growing 
algorithm. The process is summarized as follows: starting from a “seed” 
triangle, it is verified if at least one neighbor belongs to the same cluster 
of the seed. If yes, the region grows and the search repeated until the 
borders of the region are reached when no more neighboring triangles 
of the same cluster are found. A new seed triangle is chosen as the 
region stops growing. The region growing stops when all triangles are

0=+++ dczbyax
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grouped as roof faces.

2.3.1 Roof geometry
The set of neighboring triangles grouped in one region build up a plane, 
as described in the previous step, and are analyzed to compute geome-
tric parameters that are necessary to study photovoltaic and rainwater 
catchment potential: slope, orientation, and area.
Orientation: Considering one group of triangles, as shown in figure 3, 
it is possible to compute the normal vector of each triangle, which has 
three components (a, b, c). The surface orientation is computed as the 
mean aspect of the set of triangles Equation 5.

(5)

Figure 3 - Triangulation of a group of pixels representing
a plane of the roof

	 Slope: The slope is the angle between the normal vector and 
the horizontal plane and is computed according to equations 6 and 7 
(López-Fernández, et al., 2015). R stands for the size of the projection 
of the normal vector on the horizontal plane, as displayed in figure 3, 
and S for the slope
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(6)

(7)

	 In the final step, geometric analysis and classification were car-
ried out considering the photovoltaic and rainwater harvesting potential. 
Roofs with areas smaller than the area needed for the installation of 
solar panels and areas facing the south are discarded because they are 
not well suited in the southern hemisphere. Ideal roofs for photovoltaic 
production are those with north orientation or that accept an angular 
variation of 45° to the east or west.
	 To estimate the rainwater harvesting potential, all the roofs 
were taken as potentials, as the roof orientation is not decisive for the 
rainwater harvesting assessment.

	 3. RESULTS AND DISCUSSION 

	 This section presents the results obtained in our experiments. 
Figure 4 illustrates an example of the UAV trajectory and the camera 
pose during the flight as color triangles.

Figure 4 - Point clouds with camera poses

	 A dense point cloud is obtained (figure 5) applying the SfM me-
thod. Spurious points were filtered out to eliminate points that do not 
belong to the roof, such as points on antennas, chimneys, ground or 
trees.
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Figure 5 - Filtered point clouds for the experiments 1 (a) and 2 (b)

	 Based on the filtered point clouds, roof planes were modelled 
based on the triangulation and slope/aspect variations. Figure 6 shows 
the results of the region growing on four roof examples. The first one 
is very simple, with two planes. The second and third have four planes 
and the last six. When dealing with the second example, Figure 6b, it 
was noticed that the method fails at the top of the roof. This fact can 
be explained by the lack of points in such regions, as it can be seen 
in figure 5b and by the difficulty to determine the right aspect. In the 
third example, figure 6c, and 6d, some errors in the reconstruction at 
the edges of the roof planes are visible. As most errors are located at 
the borders, it was considered that they would not influence the result 
significantly. It was also noticed that the sources of the main errors are 
blurred images and errors in the generation of the point cloud by SfM.

(a)                                         (b)

                            

 (c)                                         (d)                       

Figure 6 - Roof model showing the modelled roof planes for
experiments 1(a), 2(b), 3(c) and 4(d)
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	 For quality assessment the registration was conducted by 
using 3D affine coordinate transformation, equation (2). For experiment 
1, six points were considered in the SfM and LiDAR point clouds; six, 
five and ten points for experiments 2, 3 and 4 respectively (an example 
is displayed in Figure 7). The solution of the transformation was obtai-
ned by adjustment using the LSM.

Figure 7 - Point cloud registration and reference dimensions

	 Figure 8 illustrates a comparison between the LiDAR and SfM 
derived point clouds. Although the results are very similar, errors can 
be noticed in the comparison. Nevertheless, the roofs are parallel and 
agree in dimensions. Errors are expected, because it is difficult to iden-
tify the corners in the point clouds. In some cases, especially in the first 
and second example, the SfM software produced a point cloud with 
height variations.

(a)                         (b)                          (c)                       (d)
   

Figure 8 - Registry comparison between SfM and LiDAR point clouds
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	 The discrepancies between the SfM point cloud and the refe-
rence point cloud were computed to assess the similarity between the 
point clouds (Figure 9). As the histograms illustrate, the most frequent 
differences are close to zero. The residual best fit was achieved in the 
first example (Figure 9a), with a mean of 0.02 m and a standard devia-
tion of 0.15 m. In the second, third and fourth histograms (Figure 9b, c, 
d), the mean differences are 0.25 m, 0.01 m, and 0.04 m, and the stan-
dard deviation of 0.35 m, 0.58 m and 0.2 m respectively, which means 
that the fit was not as good as the first one. The larger differences can 
be explained by the texture variation in the point cloud derived using the 
UAV data.

(a)                         (b)                          (c)                       (d)
   

Figure 9 - Residues histogram

	
	 3.1. Area slope and orientation

	 The point clouds were segmented to separate the planes of 
the roofs and compute their Area, Slope and Orientation (aspect). The 
same parameters were obtained from the reference point cloud, by vi-
sual delineation of the roof planes. A comparison is shown in Table 1. 
Concerning the area, the comparison suggests that the errors can ran-
ge, from 1.00 - 1.67%. The reason for the larger errors (1.67%) is the 
quality of the SfM point cloud, concerning to errors in edge detection 
(Kosecka; Zhang 2010; Cohen et al., 2012; Wilson; Snavely, 2013). As 
the point cloud of the fourth roof has less texture, the areas are cor-
rectly segmented. When there is texture (local height variation) in the 
point cloud, the region- growing algorithm fails to group the triangles of 
a plane.
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Table 1 - Summary of extracted parameters (Area, Slope, Orientation) 
and Differences

   Parameters

Area  (m2) Slope (o) Orientation 
(o) Differences

Roofing Ref. SfM LiDAR SfM LiDAR SfM Area 
(%)

Slop
(%)

Or
(%)

Exp 1
Face 1 291 289.97 58.66 57.89 54 53.70 0.35 1.31 0.56

Face 2 291 289.95 58.66 57.87 54 53.70 0.36 1.35 0.56

Exp 2

Face 1 75 74.62 16.4 16.17 52 51.75 0.51 1.40 0.48

Face 2 125 124.3 16.5 16.31 52 51.75 0.56 1.15 0.48

Face 3 125 124.4 16.5 16.31 52 51.75 0.48 1.15 0.48

Face 4 75 74.58 16.4 16.18 52 51.75 0.56 1.34 0.48

Exp 3

Face 1 21.51 21.38 56.72 55.95 48 47.63 0.60 1.36 0.77

Face 2 20.88 20.76 56.72 55.95 48 47.63 0.57 1.36 0.77

Face 3 21.51 21.38 56.72 55.95 48 47.63 0.60 1.36 0.77

Face 4 20.88 20.76 56.72 55.95 48 47.63 0.57 1.36 0.77

Exp 4

Face 1 30.56 30.41 15.24 15.08 43 42.71 0.49 1.05 0.67

Face 2 64.03 63.87 15.47 15.28 55 54.62 0.25 1.23 0.69

Face 3 38.07 37.99 15.28 15.11 55 54.62 0.21 1.11 0.69

Face 4 64.03 63.87 15.15 14.98 55 54.62 0.25 1.12 0.69

Face 5 38.07 37.98 15.46 15.28 55 54.62 0.24 1.16 0.69

Face 6 60.06 59.83 15.11 14.94 43 42.71 0.38 1.13 0.67

	 On the other hand, the slope differences are lower (1.05-
1.40%), which means that the method is well suited to estimate the 
slope. This is explained by the fact that the region growing method, 
even when it does not find the whole region, it can group triangles of 
the same plane with success. The same happens in the case of the 
orientation (aspect). The differences lie around 0.48 - 0.77%. It is worth 
noting that the discrepancies are related to errors in the segmentation 
of the roof planes at the edges. This is related to the lack of points at 
roof edges and on the ridge.
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	 4. CONCLUSIONS

	 This study has demonstrated a simple method to extract geo-
metric parameters used in photovoltaic and rainwater harvesting poten-
tial estimation of individual buildings based on 3D point clouds compu-
ted from UAV optical images. The method, while relatively simple, does 
yield a comparatively accurate estimation of the geometric parameters. 
The method provides a semi-automatic, quick and accurate evaluation 
of isolated roofs without the need of consulting the technical documen-
tation of the building, avoiding subjective evaluations performed by a 
human operator.
	 The experimental results confirm that the proposed method 
can extract geometric parameters such as area, slope, and orientation. 
For the analysis of the photovoltaic potential, the method is promising, 
because slope and orientation were computed with relatively good ac-
curacy in a cost-effective manner. The method failed to compute the 
area with enough accuracy because the segmentation of the roof pla-
nes failed. Nevertheless, this problem can be solved by computing the 
intersection of the detected planes, because, as the slope and orienta-
tion results show, the planes are estimated with enough accuracy. This 
step was not performed here. The area also affects the estimation of 
the available rainwater.
	 Further research is required to evaluate how point cloud re-
gistration using planar or linear features can improve the results and 
the effect that such steps can improve the computation of geometrical 
parameters.
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